

FIBER OPTIC REFERENCE FREQUENCY DISTRIBUTION TO REMOTE BEAM WAVEGUIDE ANTENNAS

M. CALHOUN, P. KUHNLE, AND J. LAW

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

4800 OAK GROVE DRIVE

PASADENA, CA. 91109

w-r! 1994

OBJECTIVES

- FTS SUPPORT OF DSS 24 FOR TRACKING UNMANNED SPACECRAFT AND SUPPORTING SCIENTIFIC EXPERIMENTS
 - PROVIDE REFERENCE FREQUENCIES AND TIME CODE TO REMOTE BEAM WAVEGUIDE ANTENNAS LOCATED
 APPROXIMATELY 16 km FROM REFERENCE SOURCE
 - MINIMUM DEGRADATION OF HYDROGEN MASER
 STABILITY AND PHASE NOISE
 - USE STANDARD SINGLE MODE FIBER OPTIC CABLE
 BURIED AT A DEPTH OF 1.5 METERS
 - UTILIZE COMMERCIAL OFF-THE-SHELF EQUIPMENT
 IN ORDER TO MEET COST CONSTRAINTS

DSS 24 Frequency and Timing Distribution Block Diagram

MDC 2

SURFACE TEMPERATURE MEASURED AT GOLDSTONE TRACKING STATION

PHASE NOISE TEST RESULTS SPC 10 TO DSS 24 FIBER OPTIC REFERENCE FREQUENCY DISTRIBUTION

PHASE NOISE TEST RESULTS AT DSS 24				
FREQUENCY OFFSET FROM CARRIER (Hz)	REQUIRED PERFORMANCE AT X BASD	MEASURED @ 5 MHz	MEASURED @ 100 MHz	EQUIVALENT @ X BAND (L(f) @ 5 MHz -64 d B)
	(dBc)	(dBc)	(dBc)	(dBc)
1	-56	-121	-96	-57
10	-66	-140	-115	-76
100	I -66	l -14s	-123	-84
1000	-66	-150	-125	-86
10000	-66	-151	-125	-87
l 100000) ! -66	-154	- 1 2 6	- 9 0

TIMING

- MODIFIED IRIG-G TIME CODE FROM SPC 10 MASTER CLOCK

 VIA 16 km FIBER OPTIC LINK
- TIME OFFSET FROM **SPC** 10 LESS THAN 100 NANOSECONDS
- JITTER LESS THAN 2 NANOSECONDS
- 82 MICROSECONDS OF DELAY REMOVED AT DSS 24 TCT

SUMMARY

- INSTALLATION AND TESTING COMPLETE
- TRANSMITTED VIA 16 km FIBER OPTIC LINK
- ASSEMBLY UTILIZES COMMERCIAL FIBER OPTIC
 LASER TRANSMITTERS AND RECEIVERS AS WELL AS
 A COMMERCIAL DISCIPLINED FREQUENCY STANDARD
- 5, 10, AND **100** MHz REFERENCE FREQUENCY PERFORMANCE EXCEEDS PHASE **NOISE SPECIFICATION**
- ASSEMBLY DELIVERS A QUALITY TIME CODE SIGNAL
- HYDROGEN MASER STABILITY IS DEGRADED SLIGHTLY
 BY COMMERCIAL FIBER OPTIC EQUIPMENT AND LONG RUN
 OF FIBER OPTIC CABLE